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Abstract. In this paper we present some new and pertinent connections between the Strong
Optimization and the Approximate Pareto type Efficiency, in particular, with the usual
Vector Optimization, at first in the Ordered Vector Spaces by the natural Convex Cones and,
afterwards, in the Ordered Hausdorff Locally Convex Spaces. The main result is obtained
considering the notion of full nuclear cone. Our results, is related to an appropriate scalar-
ization method.
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1. Introduction

One of the main research direction concerning in Vector Optimization is
the study of the existence of Pareto type efficient points (see, for instance,
the recent results, comments and examples given in [7–15, 22–26, 30,31],
among others). In this context, it can be immediately remarked very clear
that an important mathematical tool imposed especially by its implications
and applications to the study of this kind of optimality was, and it remains
actual the concept of nuclear (supernormal) cone introduced by G. Isac
in [7], published in [8] (with a solid motivation regarding, at least the
Vector Optimiztion) and developed With significant applications until now
in other connected papers.

Recently, G. Isac introduced in [15] the notion of full nuclear cone. The
reader can find in [15] also some properties of this class of convex cones,
locally convex spaces.

The main result in [15] is a general necessary and sufficient test for Pa-
reto efficiency. This test is based, on the notion of full nuclear cone.

Now, in this paper we present an improvement of this general test. By
this improvement we present a connection between the strong optimization
and Pareto efficiency.
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We obtained this result being inspired by the notion of full nuclear cone.
Perhaps, the results presented in this paper may be the origin of new inves-
tigation in the Vector Optimization Theory.

2. Preliminaries

We denote in this paper by X a real vector space or a locally convex vector
space. We use for a locally convex vector space, the definition given by Tre-
ves [29] i.e., a locally convex space is a couple (X, Spec(X)), where X is a
real vector space and Spec(X) is a family of seminorms on X satisfying the
following properties:

(1) λp ∈ Spec(X), whenever λ∈R+ and p ∈Spec(X),
(2) if p ∈Spec(X) and q is a seminorm on X such that q �p, then q ∈

Spec(X),
(3) for every p1, p2 ∈ Spec(E), sup(p1, p2) ∈ Spec(X) where

sup(pl, p2)(x)= sup(p1(x),p2(x)), for any x ∈X.

It is known [29] that if Spec(X) is given, then there exists a locally convex
topology τ on X such that X(τ) is a topological vector space, such that a
seminorm p on X is τ -continuous if and only if p ∈ Spec(X).

We say that a subset B ⊂ Spec(X) is abase of Spec(X) if and only if,
for every p ∈Spec(X) there exists q ∈B and a real number λ>0 such that
p �λq.

The topology τ defined on X by Spec(X) is a Hausdorff topology if
Spec(X) has a base B satisfying the following property:

{x ∈X|p(x)=0, for all p ∈B}={0}.

In this case we say that B is a Hausdorff base for Spec(X). We denote X∗

the topological dual of X. Let X be a real vector space. We say that a
non-empty subset K of X is a convex cone if the following properties are
satisfied:

(k1) K +K ⊆K,
(k2) λK ⊆ K, for every λ∈R+.

A convex cone K ⊂X is said to be pointed if the following property
is satisfied:

(k3) K ∩ (−K)={0}.
When X is a locally convex vector space and K ⊂ X is a convex one, we
suppose also that K is a closed set in X. If a convex cone K ⊂X is given,
we denote by K∗ the dual of K i.e., K∗ ={x∗ ∈X∗:x∗(x)�0, for all x ∈K},
and by K0 the polar of K, i.e., K0 =−K∗.
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If τ is the topology defined by Spec(X), we recall that a pointed convex
cone K ⊂X is normal (with respect to the topology τ ), if and only if, one
of the following equivalent assertions is satisfied:

(n1) there exists a base B of Spec(X) such that for every p∈B and every
x, y ∈K, such that x �y we have p(x)�p(y),

(n2) if {xi}i∈I , {yi}i∈I are two arbitrary nets in K, such that for every i ∈
I,0�xi �yi and limi∈I yi =0, then we have limi∈I xi =0.

We note that the notion of normal cone is the most important notion in
the theory of convex cones in topological vector spaces.

Let X be a vector space ordered by a convex cone, K and let K1 be
a non-empty subset of K and A a non-empty subset of X. The follow-
ing definition introduces a new concept of (approximate) Pareto type effi-
cient points which, particularly, leads to the well know notion of Pareto
efficiency (in fact, the generalization in abstract spaces of the finite dimen-
sional notion).

DEFINITION 2.1. We say that a0 ∈ A is a K1-Pareto (minimal) efficient
point of A, in notation, a0 ∈eff(A,K,K1) (or a0 ∈MINk+k1(A)) if it satisfies
one of the following equivalent conditions:

(i) A∩ (a0 −K −K1)⊆a0 +K +K1

(ii) (K +K1)∩ (a0 −A)⊆−K −K1

(iii) (K +K1)∩ (a0 −A−K −K1)⊆−K −K1

In a similar manner one defines the Pareto (maximal) efficient points by
replacing K +K1 with −(K +K1).

REMARK 2.1. a0 ∈ eff(A,K,K1) if it a fixed point for one of the follow-
ing multifunctions Fi :A→A, i ∈{1,2,3,4} defined by

F1(t)={a ∈A :A∩ (a −K −K1)⊆ t +K +K1}
F2(t)={a ∈A :A∩ (t −K −K1)⊆a +K +K1}
F3(t)={a ∈A : (A+K +K1)∩ (a −K −K1)⊆ t +K +K1}
F4(t)={a ∈A : (A+K +K1)∩ (t −K −K1)⊆a +K +K1}

Consequently, for the existence of the Pareto type efficient points it can
applied appropriate fixed point theorems concerning the multi-functions
(see, for instance, [4] and other recent papers).

REMARK 2.2. In [20] it is shown that whenever K1 ⊂K\{0}, the existence
of this new type of efficient points for lower bounded sets characterizes
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the semi-Archimedian ordered vector spaces and the regular ordered locally
convex spaces.

REMARK 2.3. When K is pointed, that is, K ∩ (−K)={0} and K1 ={0},
then, from Definition 2.1, we obtain the well-known usual notion of Pareto
(minimal, efficient, optimal or admissible) point, abbreviated by

a0 ∈ eff(A,K)= eff(A,K, {0}), (or a0 ∈MINK(A)),

that is satisfying the next equivalent properties:

(i) A∩ (a0 −K)={a0};
(ii) A∩ (a0 −K/{0})=∅

(iii) K ∩ (a0 −A)={0};
(iv) (K\{0})∩ (a0 −A)=∅

and it is clear that for any ε ∈K\{0}, taking K1 ={ε}, it follows that a0 ∈
eff(A,K,K1) if and only if A∩ (a0,−ε −K)=∅. In all these cases, the set
eff(A,K,K1) was denoted by ε − eff(A,K)(or ε − MINK(A) as in [20, 25]
and [13, 26]) and it is obvious that eff(A,K)=⋂

i∈K\{0}[ε − eff(A,K)]
We put also in evidence the following facts.

(a) If 0 /∈K1 then Definition 2.1 is equivalent to the following condition:
A∩ (a0 −K −K1)=φ if and only if (K +K1)∩ (a0 −A)=φ.

(b) If 0∈K1 then Definition 2.1 is equivalent to the condition:

A∩ (a0 −K −K1)={a0}.

(c) If K ∩ (−K1) = {0} then we have the following relation
eff(A,K,K1)= eff(A,K)=⋂

[0] �=K,⊂K eff(A,K,K2).

3. Nuclear and Full Nuclear Cones

Let (X(τ),Spec(X)) be a locally convex space and K ⊂X a pointed convex
cone. We recall the following notion.

DEFINITION 3.1. (Sec [8]). We say that K is a nuclear cone (with respect
to the topology τ ), if and only if there exists a base B={pi}i∈I of Spec(X)
such that for any p ∈ B, there exists fp, ∈K∗ such that p(x) � fp(x), for
every x ∈K.

About this notion the reader is referred to [7–18], [1–14], [23–26] and
[31, 32]. In the papers cited above are presented examples and properties
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of nuclear cones and also applications to Pareto optimization and to Func-
tional Analysis.

We note that in every locally convex space, every normal cone is nuclear
with respect to the weak topology. The notion of nuclear cone is more
interesting in locally convex spaces than in normed vector space, since in
any normed vector space a pointed convex cone nuclear if and only if it is
well-based [8].

Let B be a Housdorff base of Spec(X). Obviously, we can have B =
Spec(X). Suppose given a pointed closed convex cone K ⊂X. Let ϕ : B →
K∗\{0} be an arbitrary mapping. We define the set Kϕ = {x ∈ X:p(x) �
ϕ(p)(x), for all p ∈B.

We proved in [15] that if Kϕ �= {0}, then Kϕ, is a closed pointed convex
cone. It is also known, that if K is a closed pointed and normal cone, then
there exists a mapping ϕ:B →K∗\{0} such that Kϕ �= {0}. We note also the
following result.

PROPOSITION 3.1. A closed pointed convex cone K ⊂X is nuclear if and
only if there exists a mapping ϕ:B →K∗\{0} such that K ⊆Kϕ.

Proof. First, we note that we remarked in [15] that if K is nuclear, then
there exists a mapping ϕ :B→K∗\{0} such that K ⊆Kϕ. We show now that
the converse is also true. Indeed let p ∈ B be an arbitrary seminorm. We
take fp =ϕ(p)∈K∗\{0}. Since K ⊆Kϕ, we have that for every x ∈K,p(x)�
ϕ(p)(x)=f (x), that if K is a nuclear cone.

When Kϕ �= {0} it is called full nuclear cone associated to the cone K.

Using the notion of full nuclear cone, we proved in [15] the following
result, related to the existence of Pareto efficient points.

THEOREM 3.1 (See [15]). Let (X, Spec(X)) be a Hausdorff locally convex
space, K ⊂ X a closed pointed convex cone and A ⊂ X a non-empty subset.
The set A has a Pareto (minimal) efficient point with respect to K if and only
if, there exists an element u0 ∈A, a Hausdorff base B of Spec(X), a mapping
ϕ :B→K∗\{0}, and an element x∗∈D =A∩ (u0 −K) such that D −x∗⊂Kϕ

(i.e., x* is a least element of the set D with respect to the full nuclear cone
Kϕ).

In the next section we will give an improvement of this result.

4. The Main Results and Related Topics

The following theorem offers the first important connection between the
strong optimization and the (approximate) Pareto efficiency in the context
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of ordered vector spaces, as it was described initially in the previous
Definition 2.1.

THEOREM 4.1. If we denote by S(A,K,K1)={a1 ∈A: ⊆ a1 +K +K1} and
S(A,K,K1) �=∅, then S(A,K,K1)= eff(A,K,K1).

Proof. Clearly, S(A,K,K1) ⊆ eff(A,K,K1). Indeed, if a0 ∈ S(A,K,K1)

and a ∈A∩ (a0 −K −K1) are arbitrary elements, then a ∈a0 +K +Kl, that
is, a0 ∈ eff(A,K,K1), by virtue of (i) in Definition 2.1. Suppose now that
ā ∈ S(A,K,K1) �= ∅ and there exists a0 ∈ eff(A,K,K1)\S(A,K,K1). From
ā ∈ S(A,K,K1) it follows that a0 ∈ ā + K + K1, that is ā ∈ a0 − K − K1,
from which, since ā ∈ A and a0 ∈ eff(A,K,K1) we conclude that ā ∈ a0 +
K + K1. Therefore, A ⊆ ā + K + K1 ⊆ a0 + K + K1, in contradiction with
a0 /∈S(A,K,K1) as claimed.

We note that when K =K1 we denote S(A,K,K1) by S(A,K).

REMARK 4.1. The above theorem shows that, for any non-empty subset
of an arbitrary vector space, the set of all strong minimal elements with
respect to any convex cone through the agency of every non-empty sub-
set of it coincides with the corresponding set of Pareto (minimal) efficient
points whenever there exists at least a strong minimal element, the result
remaining obviously valid for the strong maximal elements and the Pareto
maximal efficient points, respectively.

Using this result and our abstract construction given in [22] for the H-
locally convex spaces introduced by Th. Precupanu in [27] (as separated
locally convex spaces with any seminorm satisfying the parallelogram law),
we established in [25] that the only best simultaneous and vectorial approx-
imation for each element in the direct sum of a (closed) linear subspace
and its orthogonal with respect to a linear (continuous) operator between
two H-locally convex spaces is its spline function. We also note that it is
possible to have S(A,K,K1) = ∅ and eff(A,K,K1) = A. Thus, for exam-
ple, in the case when X=R2 is endowed with the separated locally convex
topology generated by the seminorms p1, p2 defined by

p1, p2:X →R+, p1(x, y)=|x|, p2(x, y)=|y|,
K =R2

+ ={(x, y)∈R2 :x, y �0},K1 ={(0,0)}
and

A={(λ,1−λ : 0�λ�1)}.
In this case it is clear that S(A,K,K1)=∅ and eff(A,K,K1)=A.
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In all of our further considerations we suppose that X is a Hausdorff
locally convex space having the topology induced by Spec(X) = P = {pa :
α ∈ I } of semi-norms, and ordered by a convex cone K. We note again the
topological dual of X by X∗. In this framework the next theorem contains
a significant criterion for the existence of the approximate Pareto (mini-
mal) efficient points, in particular, for the usual Pareto (minimal) efficient
points, taking into account the dual cone K∗ of K and its polar cone K0 =
−K∗. The version for the (approximate) Pareto (maximal) efficient points is
straightforward.

THEOREM 4.2. If A is any non-empty subset of X and K, is an arbitrary
non-empty subset of K, then a0 ∈ eff(A,K,K1) whenever for each pα ∈P and
η ∈ (0,1) there exists u∗ in the polar cone K0 of K such that pa(a0 − a) �
x∗(a0 −a)+η,∀a ∈A.

Proof. We follow the general lines of the proof for Theorem 2.5 in [25].
Let us suppose that, under the above hypotheses, (K + K1) ∩ (a0 − A) �⊂
−(K +K1) that is, there exists a ∈ A such that a0 −a ∈K +K1\(−K −K1).
Then, a0 − a �= 0 and, because X is a Hausdorff space there exists pα ∈ P

such that pα(a0 −a)>0. On the other hand, there exists n∈N∗ sufficiently
large with pa(a0 −a)/n∈ (0,1) and the relation given by the hypothesis of
theorem leads to pα(a0 − a) � x∗(a0 − a) + pα(a0 − a)/n with x∗ ∈ K0 and
n→∞, which implies that pα(a0 −a)�0, which is a contradiction and the
proof is complete.

REMARK 4.2. The above theorem represents an immediate extension of
Precupanu’s result given in Proposition 1.2 of [28]. In general, the converse
of this theorem is not valid at least in (partially) ordered separated locally
convex spaces as we can see from the example considered in Remark 4.1.
Indeed, if one assumes the contrary in the corresponding, mathematical
background, then, taking η= 1

4 it follows that for each λ0 ∈ [0,1] there exists
c1, c2 � 0 such that |λ0 − λ| � (c1 − c2)(λ0 − λ) + 1

4 ,∀λ ∈ [0,1]. Taking λ = 1
4

one obtains |1−4λ|� (c1 −c2)(1−4λ)+1,∀λ∈ [0,1] which for λ=0 implies
that c2 � c1 and for λ= 1

2 leads to cl � c2, that is, |1 − 4λ|� 1,∀λ∈ [0,1], a
contradiction.

The beginning and the consideration of Section 4 in [15] suggested us to
consider for each function ϕ :P →K∗\{0} the full nuclear cone.

Kϕ ={x ∈X :p(x)�ϕ(p)(x),∀p ∈P }

and to give the next generalization of Theorem 7 [15] in a more gen-
eral context, which represents also a new important link between strong
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optimization and the approximate vector optimization together with its
usual particular variant, respectively.

THEOREM 4.3. If there exists ϕ0 :P →K∗\{0} with K ⊆Kϕ0 then

eff(A,K,K1)=
⋃

a∈A

ϕ∈P→K∗\{0}

S(A∩ (a −K −K1),Kϕ)

for any non-empty subset K1 of K.
Proof. If a0 ∈ eff(A,K,K1) is an arbitrary element, then, in accordance

with the point (i) of the Definition 2.1 and the hypothesis of the above
theorem, we have A ∩ (a0 − K − K1) − a0 ⊆ K + K1 ⊆ K ⊆ Kϕ0 for ϕ0 :
P →K∗\{0} given by assumption. Therefore, a0 ∈S(A∩ (a0 −K −K1),Kϕ0).
Hence,

eff(A,K,K1)⊆
⋃

a∈A

ϕ∈P→K∗\{0}

S(A∩ (a0 −K −K1),Kϕ)

Conversely, let now al ∈ S(A∩ (a0 −K −Kl),Kϕ) for at least one elements
a0 ∈A and ϕ : P →K∗\{0}. Then, a1 ∈A∩ (a0 −K −K1) and A∩ (a0 −K −
K1) − a1 ⊆ Kϕ that is, p(a − al) � ϕ(p)(a − a1),∀a ∈ A ∩ (a0 − K − K1),p ∈
P which implies immediately that p(a1 − a) � ϕ(p)(a1 − a) + η,∀a ∈ A ∩
(a0 − K − K1),p ∈ P,η ∈ (0,1) and, by virtue of Theorem 4.2 one obtains
a1 ∈ eff(A ∩ (a0 − K − K1),K,K1). But eff(A ∩ (a0 − K − K1),K,Kl) ⊆
eff(A,K,K1).

Indeed, for any t ∈ eff(A∩ (a0 −K −K1),K,K1) and h∈A∩ (t −K −K1)

we have h ∈ A ∩ (a0 − K − K1) ∩ (t − K − K1) ⊆ t + K + K1 that is, A ∩ (t −
K − Kl) ⊆ t + K + K1 and by point (i) of Definition 2.1 one obtains t ∈
eff(A,K,K1). This completes the proof.

REMARK 4.3. The hypothesis K ⊆Kϕ0 imposed upon the convex cone K

is automatically satisfied whenever K is a supernormal (nuclear) cone and
it was used only to prove the inclusion eff(A,K,K1)⊆

⋃
a∈A

ϕ∈P→K∗\{0}
S(A∩ (a −

K −K1),Kϕ). When K is any pointed convex cone, A is a non-empty sub-
set of X and a0 ∈ eff(A,K), then, by virtue of (i) in Remark 2.3, it follows
that A ∩ (a0 − K) = {a0} that is, A ∩ (a0 − K) − a0 = {0} ⊂ Kϕ. Hence, a0 ∈
S(A∩ (a0 −K),Kϕ) for every mapping ϕ :P :K∗\{0} and the next corollary
is valid.

COROLLARY 2.3.1. For every non-empty subset A of any Hausdorff locally
convex space ordered by an arbitrary, pointed convex cone K with its dual
cone K∗ we have
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eff(A,K)=
⋃

a∈A

ϕ:P→K∗\{0}

S(A∩ (a −K),Kϕ)

Comments

Clearly, the announced theorem represents a significant result concerning
the possibilities of scalarization for the study of Pareto efficiency in Haus-
dorff locally convex spaces, as we can see also in the final comments of
[15] for the particular cases of Hausdorff locally convex spaces ordered by
closed, pointed and normal cones.

We note also that Proposition 3.1 and Theorem 3.2 proved in [21] sup-
port the fact that the open problem defined [15] seems to be interesting
problem.

Because in a normed vector space a pointed closed convex cone is
nuclear, if and only if the cone is well based, our results are more inter-
esting in a general locally convex space. Considering Theorem 3.2 proved
in [21], we have that, in our Theorem 4.3, replacing the norm by an equiv-
alent norm, we can replace the cone Kϕ, by the initial cone K. We note
also that Theorems 4.2 and 4.3 are valid if we replace the spectrum P of
the space X by a base of this spectrum. In this case in the formula given
in Theorem 4.3, the union is reduced to a set.
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locallement conexes, séparés, These (Docteur de 3-eme cycle), Ecole Normale Supéirieure,
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17. Isac, G. and Postolicǎ, V. (1993), The Best Approximation and Optimization in Locally
Convex Spaces, Verlag Peter Lang GmbH, Frankfurt am Main, Germany.

18. Isac, G. and Tammer, Chr. (2002), Nuclear and full nuclear cones in product spaces.
Pareto efficiency and an Ekeland type variational principle (Preprint).

19. Luc, D.T. (1989), Theory of Vector Optimization, Lecture notes in Economics and
Mathematical Systems, Nr. 319, Springer-Verlag.

20. Németh, A.B. (1989), Between Pareto efficiency and Pareto ε-efficiency, Optimization,
20(5), 615–637.

21. Petschke, M. (1990), On a theorem of Arrow, Barankin and Blackewell, SIAM J. Con-
trol Opt., 28(2), 395–401.
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